INERTIAL SENSING WITH QUANTUM GASES

Inertial Measurement Units (IMU)

To S To Manual Man Manual Manu

Accelerometer: Sense acceleration Gyroscope: Sense rotation

Magnetometer: Measure magnetic fields

00

Atom-based IMUs

- Key principle: Employ ultra-cold atoms as "sensors"
- Use interference effects to measure *acceleration, magnetic fields and absolute gravity gradients*
- Cool and manipulate atoms in sequences designated for high-precision sensing.

Atom Interferometry

Creating overlapping waves of matter

COLD, COLDER, BEC...

Choice of source for atom-based IMUs: thermal or condensed ensembles.

which is better suited?

Thermal ensemble (non-condensed): Atoms *retain individual* wavefunction Bose-Einstein Condensed ensemble (BEC): Atoms *form collective* wavefunction

To condense or not condense...

Differences:

- Number of atoms
- Size of wave package
- Production rate
- Susceptibility to statistical and systematic effects

Read the paper

USE CASES

Gravimeter, Gradiometer, WEP test

EXPANSION AND COLLIMATION

- Delta Kick Collimation (DKC) to reduce momentum width
- Preservation of phase space density: increased ensemble size
- Necessitates trade-off: expansion rate vs ensemble size.

MEAN FIELD EFFECTS

- Short time-scales: BEC suffers from much stronger mean field effects
- Long time-scales: BECs outperform thermal ensembles
- Reason: different density and expansion behavior

SIZE MATTERS...

$Parameter \setminus Case$	Gravimeter		Gradiometer		WEP-test	
	thermal	BEC	thermal	BEC	thermal	BEC
$N_{\rm at}$ (initial)	1×10^9	1×10^6	1×10^{9}	1×10^6	1×10^9	1×10^6
T_{at} (K)	80×10^{-9}	50×10^{-12}	80×10^{-9}	50×10^{-12}	80×10^{-9}	50×10^{-12}
P _{exc}	0.57	0.99	0.33	0.97	0.43	0.99
t_{int} (s); n_{cycle}	3.36; 7	3.45; 3	86400; 72000	86400; 4320	2×10^7 ; 2.4×10^7	$2 \times 10^7; 10^6$
$ u_0$	1		50		10^6	
2T (s)	150×10^{-3}		0.5	10	0.5	10
$\mathcal{O}(\delta_{\phi_{ ext{target}}})$	$\Delta g/g = 10^{-9}$		$\Gamma = 2.5 \text{ mE} = 2.5 \times 10^{-12} \text{ s}^{-2}$		$\eta = 2 \times 10^{-15}$	
$\mathcal{O}(\sigma_{\phi_{\mathrm{SN}}})$	1.2×10^{-11}	3.3×10^{-10}	$5.0 \times 10^{-13} \text{ s}^{-2}$	$5.5 \times 10^{-14} \text{ s}^{-2}$	1.2×10^{-15}	2.1×10^{-16}
$\mathcal{O}(\delta_{\phi_{\mathrm{GG}}})$	4.9×10^{-15}	1.1×10^{-14}	$2.4 \times 10^{-14} \text{ s}^{-2}$	$9.9 \times 10^{-13} \text{ s}^{-2}$	1.1×10^{-17}	4.8×10^{-16}
$\mathcal{O}(\delta_{\phi_{\mathbf{C}}})$	1.8×10^{-14}	3.7×10^{-14}	$7.0 \times 10^{-14} \text{ s}^{-2}$	$1.5 \times 10^{-13} \text{ s}^{-2}$	3.7×10^{-17}	7.6×10^{-17}
$\mathcal{O}(\delta_{\phi_{WFA}})$	3.4×10^{-10}	2.1×10^{-13}	$1.0 \times 10^{-12} \text{ s}^{-2}$	$4.4 \times 10^{-15} \text{ s}^{-2}$	1.3×10^{-12}	8.0×10^{-16}
$\mathcal{O}(\sigma_{\phi_{\mathrm{MF}}})$	1.3×10^{-11}	9.2×10^{-10}	$4.7 \times 10^{-13} \text{ s}^{-2}$	$5.4 \times 10^{-13} \text{ s}^{-2}$	1.1×10^{-15}	1.8×10^{-15}

BECs:

- o smaller size-related effects (GG, CC, WFA)
- comparable mean-field effects at long interrogation times
- preservation of high contrast even at long interferometry times

Thermal:

low shot noise at short interferometry times (high atom number)

- short cycle rates due to fast production of thermal ensembles
- large sizes at long interrogation times due to high expansion rate

CONCLUSION

EMPLOYING QUANTUM IMUs

Short Interrogation times, e.g. earth-based or mobile sensors:

Thermal clouds for rapid readouts, noise resilience

Intermediate Interrogation times, e.g. ASATs, ICBMs:

Trade-off required, potential benefit from BECs.

Long interrogation times, e.g. space-based missions:

BECs benefit from long integration times.

THANK YOU!

paper

Scan and Connect!

